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In addition to the results in [l], wave fields of quasi-longitudinal and quasi- 
transverse elastic vibrations loom a point source of an instantaneous pulse type 
are stndied in an anisotropic medium with four elastic constants. Cases are 
considered when the wave fronts are convex closed curves and when the inner 
front consists of piecewise-smooth curves forming acute-angled edges. 

The solution characterizing the elastic vibrations of quasi-longitudinal and quasi- 
transverse type SE’ waves in an infinite anisotropic medium from a point sonrce of 
instantaneous pulse type placed at the origin is [l] 

The complex variables Br and the quantities hk are defined by the following relation- 

sips : 
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= [(b + 4 - U$*l T (- 1) k fQ 0,) “’ 
2bd > (k = I. 2) 

Q (0,) = [(b + d) - L8,2]2 - 4bd (1 - ~9~2) (1 - dO,;s) 

L = ah + d” - c2 

(2) 

U) 

The functions A,, are branches of an algebraic function h which is single-valued on a 
Riemann surface 121. The functions WA are branches of an arbitrary analytic function w 

which is single-valued on a two-sheeted Riemann surface. The functior. w must be cho- 

sen so that the real parts WA would vanish on the edges of the slits of planes of the Rie- 
mann surface 12, 31, where the functions Atb take on real values. Wave fronts which are 
expressed as envelopes of the lines (2) for real values of 8, and I,, 

I$: = - kk’ / (A;; - 8,$,.‘), qh. = - 1 ! (?bh. -- u,,J.,,‘) (4) 

correspond to the edges of these slits in the f q -plane. For real media of the considered 

class of anisotropy, the ratios between the e&tic constants and the density 

a = cii i R, b = c,, / o, d = COG / p, c = (Cre -!- c,z) / P (5) 

satisfy the condition 

a > d, b > d, d > 0, K, = ab - (c - d) > 0 (6) 

Let us limit ourselves below to the consideration of cases when the quantities (5) sati- 

sfy the additional condition 
K, = ab - (c + d) < 0 (7) 

Under the condition (7) two branch points are real for the inner radical in (3) and two 

are imaginary [2] 

M = (b +- d) & - (b - d) (a - b) d 

A’, z (U - d) (b - d) - C' 

The picture of elastic wave propagation in media satisfying condition (7) depends on 
the signs of the quantities 

N, = (a - d) b - 3, .V, = (b - d) a - c2 (9) 

Let us first examine the case when iv, > 0, N, > 0. In this case the Riemann surface 

Fig. 1 Fig. 2 

c2] is represented in Fig. 1; the edge of the slits (u~‘~ :a) of the Or and f&planes are 
connected crosswise. Let us fix the functions h, on theug-planes so that they would be 
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positive for eA = i fl, where fI is a sufficiently small positive quantity. The correspond- 
ence between points of the 5 7 -plane and points of the 6, -planes is expressed by the 

relations (2). Substituting the values (3) into the relations (2) and eliminating the radi- 
cals, we arrive at the identical equation 

(W’ -t- adq’ + L&12) t!S - 2E (2bdj2 + Lq2) OS- 
[(a + d) Y’ + (b -I- d) i2q2 - 6bdg2 - Lq2] C12 + 2t [(b + d) q2 - 

2bd] 0 + [q’ - (6 + d) q2 “- bd] = 0 
(10) 

Equation (10) has four roots at each point of the E q -plane ; the roots are identical at 

points symmetric with respect to the t-axis. The complex roots are pairwise conjugate. 
In the case under consideration, the fronts of the quasi-longitudinal and quasi-transverse 

waves expressed by (4), are convex, closed curves p). Pictured in Fig.2 are the wave 
fronts faa aragonite 143 

cI1 := 160. C,, = 86.7, CM = 42.7, C,, = 37.3 [IOlQ dyn/cm2j, p = 2.95 g/cm2 

(the picture is symmetric relative to the E - and q-axes). The edges of the slits 
(-1 I ‘pz, -_ 1 I ) ‘a) of the 9,-plane and (-- 1 / 1 2, -: 1 / l/;z) of the @plane 

correspond to the quasi-longitudinal and quasi-transverse wave fronts. All four roots of 

(10) are real at points of the &l-plane exterior to the quasi-longitudinal wave front. 

Two of them retain constant values along the tangents to the quasi-longitudinal wave 
front and belong to the edges of the slit (, 1 / I,;, :- 1 / 1’;) of the 6,-plane, and the 
other two retain constant values along the tangents to the quasi-transverse wave front 

and belong to the edges of the slit (- 1 ,’ I 2, :- i / p2) of the 0,-plane. In the domain 

exterior to the quasi-longitudinal wave front, and at points of the front itself, the solution 

(1) vanishes. Equation (10) has two real and two complex roots at points of the domain 
included between the wave fronts. The real roots remain constant along the tangents to 
the quasi-transverse wave front and belong to the edges of the slit (-- 1 / v J, . :,. 1 f I/ 4 
of the (&-plane on which terms of the solutions (1) corresponding to k r- :! vanish. All 

four roots of (10) are complex at points of the domain interior relative to the quasi- 
transverse wave front, and both members in the solution (1) are not zero. The above 

information about the roots of (10) at points of the domains bounded by the wave fronts 
does not refer to the roots on sections of the E -axis where they have real values. All 

roots of (10) become infinite at the point 6 --- 0, 11 --= 0 ; the neighborhoods of the origin 

in the g 11 -plane correspond to the neighborhoods of the infinitely remote points on the 

8,. and t&-planes of the Riemann surface. 
Let us study the correspondence between points of thr wave fields and points of the 

Riemann surface expressed by (2). Let 6, -= “~1~ L lk and I,,. /:,. :l.‘l&. Then 

the correspondence between points of the Riemann surface and of the wave fields is 

expressed by the formulas 

Let us provisionally consider that the quasi-longitudinal wave is propagated on the Z! tlI- 

plane, and the quasi-transverse wave on the i,q,-plane. The subscripts at the coordinate 

points in (2) and (ll), which show to which planes &qkthe points belong, will not yet be 
disclosed. According to (11). the segments (A i / 1/a, + X) and (_f- i i 1 tl, :C: X) 
on the real axes of the tJ1. - and k&-planes, set in correspondence by the expressions 

6, = 1 / g* , correspond to the segments ( --) a, -;- vTGj and (-- r/d, --- I d) cut off 

by the wave fronts on the &I - and &-axes. The members of the solution (1) correspond- 

ing to these segments are different from zero. Parts of the wave fields in the lower &Q 
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half-plane costespond to the upper 9, half-planes. 

The functions (3) take on the positive real values 

h, ($) = 
( 

[(b + d) + $21 + (-- 1) c VQ ‘:t 
2bd > 

QW,J = Mb+ 4 + Lec21a - 4W (1 + ueks) (1 + de,2) 

on sections (0, Oo2) of the positive imaginary semi-axes of the Ok-planes, i.e. for 
OR = ie,, . The iint derivatives with respect to the variable’ ek are 

(12) 

ekyk 
hk’ = 2bdl., (ie,) ’ 

y, = L + (- Qk (KX2ek2 + M) I VFGJ 

The conditions Yl’ > 0 and Ya’ < 0 are satisfied on the sections 0 < eh < EC’!“, where 
e“ = CBqo / i ; on the boundaries of the sections 

y1 (0) = 2d ((b - d) d + C'l / (b - d), II tee) = XJ 

'I', (0) = 2bN, / (b - d), ‘y, (8”) = --c*3 

Therefore, the functions Y, and kl’ here have positive. values, and the functions I, and 

ti change sign from plus to minus at the point 

Therefore, the function A1 increases monotonously on the section (0, 0~~) of the positive 

imaginary semi-axis of tne 0, -plane ; the function Aa has a maximum at the point 

%* = i k* within the same section on the 6, -plane, i.e. grows monotonously in the 

interval.(O, W) , decreases monotonously in the interval (W, W) , where & (3~‘) = 

5, (W. 
It follows from (12) that the sections - J’ b < Q < + 1%” and - 1/d < qa < + %+ 

of the negative Q semi-axes, set in correspondence by the ixpressions Q = -ek / Ak, 

where ‘la+ < q*a < 0 , will correspond to sections of the positive imaginary semi-axes 
0 < Cl1 < W and 0 < 8, < 8P . The section + qa” < Q < -L Q* on the II ql-plane 
set in correspondence by the expression Q = --e, / & corresponds to the section ho > 

3% > @a+ ln the 3, -pla= ; in the opposite case there will not be a unique correspondence 
between point of the Riemann surface and the wave fields. The functions (12) take on 

the complex values 
L,=E+Fi (13) 

E= v-T.12 J&;i, F= Jf7?/2 r/a 

S - 2 v/” (1 + aeks) (1 A- de,2) , T =(b + d) +Lek2 

on the edges of the slits ($“, i C=J) of the 3, -planes. 

It follows from (11) that the point of the &ql-plane 

E,=rFlekE, ?I=--i/F (14) 

caarespond to points of the edges of the slits (&‘, i .WJ of the Ok-planes. The upper 

(lOWet, reSpeCt.ively) signs in (13) and (14) correspond to connecting the left (right) edge 
of the slit in the &-plane to the right (left) edge of the slit in the 8, -plane. A line in 

the third quadrant of the Karl,-plane correspond to the first connection of the slit edges, 
and in the fourth quadrant to the second. The ends of these lines coincide at the points 
Ql= t)a' and Q= 0 of the axis of ordinates forming the closed contour P, limiting the 

domain Bt symmetric relative to this axis within the quasi-longitudinal wave field. 
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Let A1 denote the remaining part of the q~i-longitudinal wave field in the lower 
El% half-plane bounded by the wave front and the contour P, . The upper $i half-plane, 

set in correspondence by the relationship (2) for k = 1 , corresponds to the domain A., 
Shifts of the quasi-longitudinal wave field in the domain A, are expressed by members 

of the solution (1) determined on the upper 0i half-plane of the Riemann surface,Some 

domain just in the 9, -plane can correspond to the domain 8,. It follows from (1l)that 
complex points of the Bz -plane satisfying the condition Fs = 0 can correspond to the 

sections (Q’, 0) of the qk-axes. from which we have 
-- 

& = _?I: [(A + Jf.4” - R) I \faKIK?]‘i: (15) 
:I z v’a; [nf -- (J,3 + 4abd”) ~2 ] 

B = Klliz (adK&~e2~ + 2adM@ + h’a [(b .- d) d _t c?]} 

Only for real values of E, in the section (E. L*t .w) do (15) define real values of ir, belong- 
ing to the sections to, f CC). Therefore, lines L, in the first and second quadrants of the 

t), -plane, which emerge from the point t&* = ie? * toward infinity, will correspond to 
the sections (Q*, 0) of the negative Q,. semi-axes. The lines L, bound the domain D, 

which is symmetric relative to the imaginary axis; we denote the rest of the upper tl, 

half-plane by c’,. The domain I), in the upper 8, half-plane, set in correspondence by 

the relation 

corresponds to the domain Bx of the quasi-longitudinal wave field in the lower &rh 

half-plane. Shifts of the quasi-longitudinal wave field in the domain 8, are expressed 

by members of the solution (1) with I; = 2, defined in the domain D, of the upper e2 
half-plane. The domain C, of the upper 8, half-plane, set in correspondence by the 
relationship (2) with k = 2 r corresponds to the domain of the quasi-transverse wave 

field on the lower Ezrlahalf-plane. Shifts of the quasi-transverse wave field in this 

domain are expressed by members of the solution (1) for k = 2, defined in the domain 
C, of the upper 0% half-plane. 

Pictured in Fig. 3 are grids in the upper 0, half-planes which correspond to grids of 

polar coordinates on the wave fields in the lower Ekqk half-planes for aragonite (the 
pictures are symmetrica relative to the imaginary or the ordinate axes). 

Now, let us examine the case when Iv, < 0 and ivs < 0. Here, the Riemann surface 
has the form [3] pictures in Fig, 4; the eages of the slits (Ui’. W) of the u,-planes are 

connected crosswise. The external wave front is a convex closed curve and is expressed 

by (4) on the edges of the slit (- 1 J )/n, 2-j / fz) of the @,-plane. The internal 

wave front consists of piecewise-smooth curves forming acute-angled edges and is ex- 

pressed by (4) on the edges of the slits (- ei’, !-6i”) of the @,-plane and (I 1 i v’z 

+ BP) of the 8, -plane. 
Pictured in Fig. 5 are wave fronts for magnesium sulfate heptahydrate [4] 

c,, = 69.8, c2* = 52.9, C&j - 22.2, c,, = 3V, p = 2.7 g/ems 

[the picture is symmetric relative to the E - and q-axes). 
The piecewise-smooth curves forming the interior wave front are connected at Cusps 

of the first kind located symmetrically relative to the coordinate axes. Sections of the 
front connecting the cusps in opposite quadrants are convex curves intersecting at points 
on the coordinate axes, Sections of the front connecting the cusps in adjoining quad- 
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rants are concave curves intersecting the coordinate axes at right angles. The interior 
wave front forms five domains, one of which is central and bounded by sections of the 
front connecting the nodal points; the remaining four domains adjoin the central domain 
at the nodal points. Only two tangents can be drawn to the interior wave front from each 
point exterior relative to the front: four tangents can be drawn from each point within 
the four domains bounded by the sections of the front connecting the cusps and the nodal 
points, It is imposdble to draw a tangent from points within the central domain to the 
interior point. 

6 

Fig. 3 

Fig. 4 Fig. 5 

All four roots of (10) are real at points of the En -plane exterior to the exterior wave 
front. Two of them belong to the edges of the slit (- 1 / I/a, -L I / V/O) of theO,-plane 
corresponding to the outer front ; and the other two to the edges of the slits (- %“. ‘- 91’) 
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of the OS -plane and (-fi- 1 i 1/ 2; + 31’) of the e1 -plane corresponding to the inner 
wave front The solution (I) vanishes at these points, 

Equation (10) has two real and two complex roots at points of the domain included 

between the fronts. The real roots belong to the edges of slits corresponding to the inner 
front The members in (1) corresponding to these roots vanish. 

AlI four toots of (10) ate real at points of the domains bounded by sections of the inner 

front WmeCting the cusps and their nodal points, and they belong to the edges of the 
slits (- tflO, -!- @lo) of the B2 -plane, and (+ 1 i 1/Z, + Qr”) of the 13, -plane. The soiu- 
tion (1) vanishes in these domains and there are no elastic vibrations of the kind under 
consideration. 

All four roots of (10) are complex at points of the central domain bounded by sections 

of the inner front included between the nodal points. The solution (1) in this domain 

corresponds to quasi-longitudinal and quasi-transverse elastic vibratiom. 
Therefore, the field of ~asi-lon~t~inal disturbances is a q~ntuply-co~ec~ do- 

main bounded by the outer front and by sections of the inner front connecting the cusps 

and the nodal points. These sections of the inner front form inner fronts of quasi-iongi- 

tudinal waves bounding four strips within the quasi-longitudinal wave field wherein 

there are no quasi-longitudinal and quasi-transverse types of SV disturbances. 
A domain bounded by sections of the inner front included between the nodal points is 

after the quasi-transverse disturbances of SV type. These domains form fronts of the 

quasi-transverse wave. 
Let us study the correspondence between points of the Riemann surface and points of 

the quasi-longitudinal and quasi-transverse wave fields on the E, nII and Es iI,-planes. 
The function h, takes on imaginary values on the sections (,t i ’ 1’ a; -t 1 / I/>) of 

the $,-plane, and real values on the edges of the slits (i_ 1 0. .t %“? The functions 

hh have complex values on the edges of the slits (C 0,“. .:.- x.) . 
According to (13), the sections (+ l/a. + 1/) and (?_ El”! 0) of the &-axis set in 

correspondence by the expression E1 - I / tt, correspond to the sections (_t- 1 ! I/a, 

C 1 ! I/i) and the edges of the slits (J: %“, -!I -0) on the @,-plane. Inner quasi-longi- 

tudinal wave fronts forming strips containing the sections (4: @. + ho) of the E;, -axis 
and the tangents thereto correspond to the edges of the slits (+ 1 i $’ &‘.T!I h? of the 

@I -plane. The sections (4: 51”~ 0) of the I2 -axis. set in correspondence by the expres- 

sion Es = 1 / 6s , correspond to the slits ( I- 81’. -I. Q) of the $-plane. 

According to (12). the function i\, is a positive monotonously increasing real function 

on the section (0, O,“j of the positive imaginary semi-axis of the @-plane in the case 
under consideration ; the function li, is a positive monotono~ly decreasing real funCtiOn 

on the same section of the 0, -plane, hence, A, (1)~‘) =- i-2 @z”). 
It follows from (11) that the section - r/z G Q c< nLo of the negative ql semi-axis 

set in correspondence by the expression qr == --e, I h, , corresponds to the section 0 :E.: 

8, < eLo of the positive imaginary semi-axis of the 8, -plane. The section Q” .’ % :G- 
- @ of the negative ?I semi-axis set in correspondence by the expression r)- = -% f&, 
corresponds to the section i&* > f& >, 0 of the positive imaginary Semi-axis Of the u2 - 

plane, in the opposite case there will be no one-to-one correspondence between points 

of the Riemann surface and the wave fields. 
The functions h, take on uomplex values represented by (13) on the edges of the SIiu 

(@tU, i CC) of the b,-planes. A line in the third,(fourth, respectively) quadrant of the 
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quasi-longitudinal wave field corresponds to connecting the left (right) edge of the slit 
in the @I -plane to the right (left) edge of the slit in the 0, -plane. The ends of these 
lines coincide at the points qt = q2” and qI = 0 of the ordinate axis to form a closed 
contour p1 expressedlby the functions (14). 

The domain of the quasi-longitudinal wave field with the external side of the closed 

contour P, in the lower &rq~ half-pla?e is denoted by AI. The upper 8, half-plane set 

in coRespondence by the relationship (‘2) at k = 1 conesponds to the domain A,. The 
shifts in this domain are expressed by members of the solution (1) defined on the upper 
9, half-plane. 

The of the wave field the section VG. q?*) 

the negative half-axis is the domain by the P,. According 

@I, some (-. et*. i &*) on the upper edge of the slit (- k&O, -L 0~‘) of the 

f&-plane CoResponds to the boundary of this strip and the tangent thereto. The domain 

of the quasi-longitudinal wave field included between the contour P, and the strip bound- 
aries is denoted by u,. 

According to (4), the points + ba + corresponding to the points q:* on the ql- and Q- 

axes satisfy the equation hz’ == 0 and are determined by the expression 

In the case under consideration, for real values of sp in the interval (0, ~1 the expres- 

sion(15) defines real values of 6, in the intervals (+ &*, 4: 30)~ where &* = O,*. 
Therefore, lines L, going from the points -k ~JJ* of the upper edge of the slit (- 61’~ 

-k 61”) to infinity in the first and second quadrants of the @,-plane CORespond to the 

sections (tit, 0) of the negative ‘I~ and Q semi-axes. Let U, denote the domain bounded 
by the lines L, and the sectior (- O;*, - Ok+) of the upper edge of the slit (- I%*, 
1. W), in the upper a2 half-plane, and let 6’2 denote the rest of the upper e2 half-plane. 

The domain D2 in the upper 0, half-plane set in correspondence by (16) CoResponds 

to thedomdn BE of quasi-longitudinal wave field in the lower & Q half-plane. Shifts 

of the quasi-longitudinal wave field in this domain are expressed by members of the 
solution (1) for k = 2 defined in the domain L3z of the upper e2 half-plane. 

The domain CZ of the upper 13? half-plane set in conespondence by the relationship 

(2) for I; I= 2 corresponds to the domain of the quasi-transverse wave field in the lower 

E, q,half-plane. Shifts in this domain are expressed by members of the solution (1) for 
k = 2 defined in the domain C, of the upper e2 half-plane. 

Pictured in Fig. 6 are grids on the upper 8, haif-planes corresponding to grids of polar 
coordinates on the wave fields in the lower kk behalf-planes for magnesium sulfate 
heptahydrate (the pictures are symmetrical relative to the imaginary or ordinate axes), 

Cases when the values of N, and N, have opposite sign are the passage From the case 
just considered to another not substantially different case, and can he analyzed easily. 

It is assumed in /JJ that the members with k -= 1 in the solution (I) express quasi- 
longitudinal disturbances, and with k = 2 quasi-transverse disturbances of SW type. 
The investigations performed herein of the wave fields for media satisjiing the condition 

(7) show that the quasi-longitudinal disturbances cannot be expressed just by single mem- 
bers of the solution (1) defined on the f3,-plane of the Riemann surface. In a certain 
domain of the wave field the quasi-longitudinal disturbances are expressed by members 
of the solution (1) defined on the @,-plane. Results of investigations show that the wave 
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picture in anlsofropic media has negative singnlarities depending on the relations of the 
other constants, If at least one of the values of (9) is less tban zero, the inner wave front 
has acute-angled edges In these cases the quasi-transverse wave field is bounded by 
sections of the inner front connecting the nodal points. The sections of the inner front 
faming the acute-angled edges are inner fronts of quasi-lon@tndinal waves bounding 
strips within this wave field in which there are no disturbances expressed by the solution 

Fig, 6 

(1). The quasi-longitudinal disturbance field is a quintuply-connected domain for 
N1 < 0 and Ns < 0 or a Mply-connected domain upon compliance with one of the 
conditfons, 

BIBLIOGRAPHY 

1. Sveklo, V. A. t Elastic vibrations of an anisotropic body, Uch, Zap. Leningrad 
Univ., Ser. Matem. Nauk, N1’7, lQ49. 

2. Osipov, I. 0.) On the plane problem of a point source of vibrations of the 
instantaneous pulse type within an anlsotropic medium. In: Elastic and 
Eiastic-plastic Wave Propagation. TashkenC’FAN: IQBQ, 

3. Osipov, I. 0.. On the two-dimensional problem of propagation of elastic waves 
due to a point source in an anisotmpic medium. PMM Vol. 33, N3.1969. 

4. Aleksandrov, K. S, and Ryrhova, T.V., Elastic properties of crystals. 
Kristallograflia, Vol.6 No‘& 1961. 

Translated by M. D. F. 


