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ON WAVE FIELDS AND ACUTE-ANGLED EDGES ON WAVE FRONTS
IN AN ANISOTROPIC MEDIUM FROM A POINT SOURCE

PMM Vol, 36, N5, 1972, pp. 927-934
1,0,0SIPOV
(Petrozavodsk)

{Received December 27, 1971)

In addition to the results in [1], wave fields of quasi~longitudinal and quasi-
transverse elastic vibrations from a point source of an instantaneous pulse type
are studied in an anisotropic medium with four elastic constants, Cases are
considered when the wave fronts are convex closed curves and when the inner
front consists of piecewise-smooth curves forming acute-angled edges,

The solution characterizing the elastic vibrations of quasi~longitudinal and quasi~-
transverse type SV waves in an infinite anisotropic medium from a point source of
instantaneous pulse type placed at the origin is [1]
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The complex vatiables 6, and the quantities A, are defined by the following relation-
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The functions A, are branches of an algebraic function A which is single-valued on a
Riemann surface [2], The functions wy are branches of an arbitrary analytic function w
which is single-valued on a two-sheeted Riemann surface, The functior. « must be cho-
sen so that the real parts w, would vanish on the edges of the slits of planes of the Rie-
mann surface 2, 3], where the functions A, take on real values, Wave fronts which are
expressed as envelopes of the lines (2) for real values of 6, and %,

B = — Ay — 8k, np=—1/0y—v2)) )
correspond to the edges of these slits in the :n -plane, For real media of the considered
class of anisotropy, the ratios between the eiastic constants and the density

a=Cu/p,b=sz/p,d=coe/9,c=(cﬁ6+612)/9 (5‘
satisfy the condition
a>d, b>d, d>0, K; =ab—(c—d)>0 (6)

Let us limit ourselves below to the consideration of cases when the quantities (5) sati-
sfy the additional condition

Ky=4ab—(c+d <0 M
Under the condition (7) two branch points are real for the inner radical in (3) and two
are imagi ——
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The picture of elastic wave propagation in media satisfying condition (7) depends on
the signs of the quantities

No=(a—d)b—c* N3g=(b—d)a— c? 9)

Let us first examine the case when N, > 0, N, > 0. In this case the Riemann surface
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[2] is represented in Fig, 1; the edge of the slits (4,°, o) of the 6, and 6,-planes are
connected crosswise, Let us fix the functions A, on the 0,-planes so that they would be



876 1.0.081pov

positive for 6, = i f, where p is a sufficiently small positive quantity, The correspond-
ence between points of the § 1 -plane and points of the g, -planes is expressed by the
relations (2), Substituting the values (3) into the relations (2) and eliminating the radi-
cals, we armrive at the identical equation
(bAEt -+ adnt + LEM?) 6% — 2 (2bdE? + Ln?) 65—
[(a+ @) n* + (b + d) E¥? — 6bacz — L2] 62 + 28 [(b -+ d) 42 — (10)
2bd} 0+ [t — (b + @) M? 4 bd] = 0
Equation (10) has four roots at each point of the § n~plane; the roots are identical at
points symmetric with respect to the f-axis, The complex roots are pairwise conjugate,
In the case under consideration, the fronts of the quasi-longitudinal and quasi-transverse
waves expressed by (4), are convex, closed curves [3], Pictured in Fig,2 are the wave
fronts for aragonite [4]
Cyy == 160. Cgy = 86.7, Cos = 42.7, €}, = 37.3[10' dyn/cm?], p = 2.95 g/cm?

(the picture is symmetric relative to the § - and n-axes), The edges of the slits
(—1/Va, = 1/ 1V a)of the 6,-plane and (--1/}d, = 1/ Vd) of the 8,~plane
correspond to the quasi-longitudinal and quasi-transverse wave fronts, All four roots of
(10) are real at points of the En-plane exterjor to the quasi-longitudinal wave front,
Two of them retain constant values along the tangents to the quasi-longitudinal wave
front and belong to the edges of the slit (- 1/ }7a, — 1/} a) of the 8,~plane, and the
other two retain constant values along the tangents to the quasi-transverse wave front
and belong to the edges of the slit (- 1/} d, =- 1/ )/d) of the 8,-plane, In the domain
exterior to the quasi-longitudinal wave front, and at points of the front itself, the solution
(1) vanishes, Equation (10) has two real and two complex roots at points of the domain
included between the wave fronts, The real roots remain constant along the tangents to
the quasi-transverse wave frontand belong to the edgesof the slit (— 1/ Vd, - 1/Vd
of the 6,-plane on which terms of the solutions (1) corresponding to & == 2 vanish, All
four roots of (10) are complex at points of the domain interior relative to the quasi-
transverse wave front, and both members in the solution (1) are not zero, The above
information about the roots of (10) at points of the domains bounded by the wave fronts
does not refer to the roots on sections of the £ -axis where they have real values, All
roots of (10) become infinite at the point & :- 0, n -~ ¢ ; the neighborhoods of the origin
in the & n -plane correspond to the neighborhoods of the infinitely remote points on the
6,~ and 0,-planes of the Riemann surface,

Let us study the correspondence between points of the wave fields and points of the
Riemann surface expressed by (2), Let 0, = O, - i¢, and %, .  iFy. Then
the correspondence between points of the Riemann surface and of the wave fields is
expressed by the formulas

g - F g k- 6 F ., N o= e ek -8 F ) Ik

Let us provisionally consider that the quasi-longitudinal wave is propagated on the i, i~
plane, and the quasi-transverse wave on the §;n,-plane, The subscripts at the coordinate
points in (2) and (11), which show to which planes £, 1, the points belong, will not yet be
disclosed, According to (11), the segments (4 1/ Va,+ ~) and (+=1/} d, + )

on the real axes of the 4, - and 6,~planes, set in comrespondence by the expressions

0y = 1/ &, ,correspond to the segments (-} a, -~ Va) and (—Vd, — } d) cut off
by the wave fronts on the §; - and },-axes, The members of the solution (1) correspond-
ing to these segments are different from zero, Parts of the wave fields in the lower Exnn
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half-plane correspond to the upper 8, half-planes,
The functions (3) take on the positive rea) values

e = (10D Lol + )" VQ e, \*
BTk 2bd
Qiey) = [(b+ d) + Le,2]* — 4bd (1 4- ae, ) (1 + de,?)
on sections (0, 8°;) of the positive imaginary semi-axes of the ©,-planes,i,e, for
8, = ie, o The first derivatives with respect to the variable'e; are

e ¥
W= ey Y=L 0 KK+ M) VG

(12}

The conditions ¥,’ >0 and ¥’ < 0 are satisfied on the sections 0 < g, < ¢°, where
e° = 0;°/ i ; on the boundaries of the sections
Y (0)=2d{(p—dd+ e/ (b—d), V()=
W, (0) = 26N,/ (b — d), ¥y () = —oc
Therefore, the functions ¥, and A’ here have positive values, and the functions ¥, and
M’ change sign from plus to minus at the point

g =[—(VadM + L V[ —(a—d) 0 — )]/ Vad K1Ks]"

Therefore, the function A; increases monotonously on the section (0, 6;) of the positive
imaginary semi-axis of the ¢, -plane; the function A, has a maximum at the point
8,* = i &* within the same section on the 6, -plane, i, &, grows monotonously in the
interval.(0, 6,*), decreases monotonously in the interval (6;*, 6:°) , where A, (6,°) =
Ay (85°)-

It follows from (12) that the sections — Vb <+ n° and — Vd < M, < + ne*
of the negative v, semi-axes, set in correspondence by the éxpressions 1, = —e, / A,
where n:* < 1% < 0, will correspond to sections of the positive imaginary semi-axes
0<8;,<6° and 06, < 8*, The section + n° < 1y < + 1,* on the £, n;-plane
set in correspondence by the expression m; = —e,/ Ay corresponds to the section 6;° >
8;>6:* in the 8,-plane; in the opposite case there will not be a unique correspondence
between point of the Riemann surface and the wave fields, The functions (12) take on
the complex values

A, =E+Fi (13)
E=VSFT/2 Vb, F=VS=T/2 Vb
S=2Yb(1+ae?)(1+del), T=(}4d) +Le?

on the edges of the slits (6,°, i o) of the 6, ~planes,
It follows from (11) that the points of the §;n,-plane

LE=FF/eE, ny=—1/F (14)

correspond to points of the edges of the slits (6,°, i o) of the 8,-planes, The upper
(lower, respectively) signs in (13) and (14) corresponda to connecting the left (right) edge
of the slit in the 6, -plane to the right (left) edge of the slit in the g, -plane, A line in
the third quadrant of the £,n,~plane correspond to the first connection of the slit edges,
and in the fourth quadrant to the second, The ends of these lines coincide at the points
™ = 12" and ", = 0 of the axis of ordinates forming the closed contour P, limiting the
domain B, symmetric relative to this axis within the quasi-longitudinal wave field,
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Let A, denote the remaining part of the quasi-longitudinal wave field in the lower
&M half-plane bounded by the wave front and the contour P,, The upper 6, half-plane
set in correspondence by the relationship (2) for & = { , corresponds to the domain 4,
Shifts of the quasi-longitudinal wave field in the domain A4, are expressed by members
of the solution (1) determined on the upper 6, half-plane of the Riemann surface, Some
domain just in the 6, -plane can correspond to the domain B,, It follows from (11)that
complex points of the 8, -plane satisfying the condition F, = § <an correspond to the
sections (n:*, 0) of the y,~axes, from which we have

’

S, =4 AL VAR TR VadK K1 145
p== AL VB VadK Ko (15)
A= Vad [M — (17 + 4abd?) g,2]

B = K1K, (adK1Ksest 4 2adMes® 4+ Ny [(b -~ d) d -+ 2]}

Only for real values of &, in the section (;*, o) do (15) define real values of 8, belong-
ing to the sections (0, 4- o). Therefore, lines L, in the first and second quadrants of the
8, =plane, which emerge from the point 8* = {e,* toward infinity, will correspond to
the sections (1;*,0) of the negative 0, semi-axes, The lines L, bound the domain D,
which is symmetric relative to the imaginary axis; we denote the rest of the upper 4,
half-plane by ¢;. The domain D, in the upper 8, half-plane, set in correspondence by

th ti
e relation 1 — 8,8 - Aym, = 0 {16)

corresponds to the domain B, of the quasi-longitudinal wave field in the lower &
half-plane, Shifts of the quasi-longitudinal wave field in the domain B, are expressed
by members of the solution (1) with % = 2, defined in the domain D, of the upper 8,
half-plane, The domain €, of the upper 4, half-plane, set in correspondence by the
relationship (2) with & = Z |, corresponds to the domain of the quasi~transverse wave
field on the lower ;1, half«plane, Shifts of the quasi-transverse wave field in this
domain are expressed by members of the solution (1) for % = 2, defined in the domain
C, of the upper 6, half-plane,

Pictured in Fig, 3 are grids in the upper 0, half-planes which correspond to grids of
polar coordinates on the wave fields in the lower {1, half-planes for aragonite (the
pictures are symmetrical relative to the imaginary or the ordinate axes),

Now, let us examine the case when N, < 0 and Ng < 0. Here, the Riemann surface
has the form [3] pictures in Fig, 4; the eages of the slits (U;°, oc) of the 4, ~planes are
connected crosswise, The external wave front is a convex closed curve and is expressed
by (4) on the edges of the slit (— 1/ V'a, -1/ Va) of the 9,-plane, The internal
wave front consists of piecewise-smooth curves forming acute-angled edges and is ex~
pressed by (4) on the edges of the slits (—6:°, 1-8:°) of the 0,-plane and (+ 1/ Vd,
-+ 8,°) of the 8, -plane,

Pictured in Fig, 5 are wave fronts for magnesium sulfate heptahydrate [4]

Cy = 69.8, Cge = 52,9, Cos = 22.2, C;p = 39, p = 1.7g/cm?

(the picture is symmetric relative to the § - and n-axes).

The piecewise-smooth curves forming the interior wave front are connected at cusps
of the first kind located symmetrically relative to the coordinate axes, Sections of the
front connecting the cusps in opposite quadrants are convex curves intersecting at points
on the coordinate axes, Sections of the front connecting the cusps in adjoining quad-



On wave fields and acute-angled edges on wave fronts 879

rants are concave curves intersecting the coordinate axes at right angles, The interior
wave front forms five dormnains, one of which is central and bounded by sections of the
front connecting the nodal points; the remaining four domains adjoin the central domain
at the nodal points, Only two tangents can be drawn to the interior wave front from each
point exterior relative to the front; four tangents can be drawn from each point within
the four domains bounded by the sections of the front connecting the cusps and the nodal

points, It is impossible to draw a tangent from points within the central domain to the
interior point,
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All four roots of (10) are real at points of the & -plane exterior to the exterior wave
front, Two of them belong to the edges of the slit (— 1/ V'a, -1/ V a) of the®,~plane
corresponding to the outer front; and the other two to the edges of the slits(—8,°, - 3:°)
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of the 9, -plane and (4 1/ ¥V d, 4-6:°) of the 8, ~plane corresponding to the inner
wave front, The solution (1) vanishes at these points,

Equation (10) has two real and two complex roots at points of the domain included
between the fronts, The real roots belong to the edges of slits corresponding to the inner
front, The members in (1) corresponding to these roots vanish,

All four roots of (10) are real at points of the domains bounded by sections of the inner
front connecting the cusps and their nodal points, and they belong to the edges of the
slits (— 61°, + 6:°) of the 8, -plane,and (+1/ Vd, + 6,°) of the 6, -plane, The solu-
tion (1) vanishes in these domains and there are no elastic vibrations of the kind under
consideration,

All four roots of (10) are complex at points of the central domain bounded by sections
of the inner front included between the nodal points, The solution (1) in this domain
corresponds to quasi-longitudinal and quasi-transverse elastic vibrations,

Therefore, the field of quasi~longitudinal disturbances is a quintuply-connected do~
main bounded by the outer front and by sections of the inner front connecting the cusps
and the nodal points, These sections of the inner front form inner fronts of quasi-longi-
tudinal waves bounding four strips within the quasi-longitudinal wave field wherein
there are no quasi-longitudinal and quasi~transverse types of SV disturbances,

A domain bounded by sections of the inner front included between the nodal points is
after the quasi-transverse disturbances of SV type, These domains form fronts of the
quasi~transverse wave,

Let us study the correspondence between points of the Riemann surface and points of
the quasi-longitudinal and quasi-transverse wave fields on the E,my and§, np-planes,

The function A, takes on imaginary values on the sections (-+1 ' Va, +1/Vd of
the 6 -plane, and real values on the edges of the slits (-1 - Vd. + ") The functions
., have complex values on the edges of the slits (4 6,°, - «) .

According to (13), the sections (+- V'a. -+ V'd) and (+ &° 0) of the &;-axis set in
correspondence by the expression & = 1/ 6, correspond to the sections (4-1/V a,
<+ 1/ V'd) and the edges of the slits (-: £;°, 4 o) on the §,~plane, Inner quasi-longi-
tudinal wave fronts forming strips containing the sections (- Vd.+ &°) of the &, -axis
and the tangents thereto correspond to the edges of the slits (- 1/ V d, £ 8:°) of the
9, -plane, The sections (+: &°, 0) of the &, -axis, set in correspondence by the expres-
sion & = 1/ 86, , correspond to the slits ( - 6:°. -1~ o) of the 8,-plane,

According to (12), the function &, is a positive monotonously increasing real function
on the section (0, 0.°) of the positive imaginary semi-axis of the 6, -plane in the case
under consideration ; the function A, is a positive monotonously decreasing real function
on the same section of the 6, -plane, hence, A (%)= %, (6,°).

it follows from (11) that the section — ¥ 5 < 1; << n.° of the negative 1, semi-axis

set in correspondence by the expression n, == —e, /A, , corresponds to the section 0 <.
8, < 6,° of the positive imaginary semi~axis of the 6, -plane, The section n,* -7 <
— V'@ of the negative " semi-axis set in correspondence by the expression 1= —&; /A,

corresponds to the section 6,° > 8, > 0 of the positive imaginary semi-axis of the 8, -
plane, in the opposite case there will be no one-tfo-one correspondence between points
of the Riemann surface and the wave fields,

The functions A, take on complex values represented by (13) on the edges of the slits
(6:°, i oc) of the 6, ~planes, A line in the third, (fourth, respectively) quadrant of the
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quasi-longitudinal wave field corresponds to connecting the left (right) edge of the slit
in the 9, ~plane to the right (left) edge of the slit in the 8, -plane, The ends of these
lines coincide at the points 1, = n;° and v, = 0 of the ordinate axis to form a closed
contour P, expressed'by the functions (14).,
The domain of the quasi-longitudinal wave field with the external side of the closed
contowr P, in the lower §im half-plane is denoted by 4. The upper 6, half-plane set
in comrespondence by the relationship (2) at k¥ = 1 cormesponds to the domain 4,. The
shifts in this domain are expressed by members of the solution (1) defined on the upper
8, half-plane,
The strip of the quasi~longitudinal wave field containing the section (— V4. n:*)
of the negative n; half-axis is within the domain bounded by the contour P,. According
to [3], some section (— 6,*, + 6,*) on the upper edge of the slit (— 6,°, — 8:°) of the
8,-plane corresponds to the boundary of this strip and the tangent thereto, The domain
of the quasi-longitudinal wave field included between the contour Py and the strip bound~
aries is denoted by ;.
According to (4), the points +- 6;* corresponding to the points n:* on the Ny - and N
axes satisfy the equation A2’ == 0 and are determined by the expression
o [ VaaM+ Vel —KiKeNs [0 —dyd + ¢\
o=\ Vaikik, )

In the case under consideration, for real values of ¢, in the interval (0, <) the expres-
sion (15) defines real values of 8, in the intervals (4 &*, 1= %), where §:* = 6,*,

Therefore, lines L, going from the points - :* of the upper edge of the slit (— 8:°,
-+ 6:°) to infinity in the first and second quadrants of the 0, ~plane correspond to the
sections {1,, 0) of the negative n and ", semi-axes, Let D, denote the domain bounded
by the lines L, and the section. (— 6;*, — 8,*) of the upper edge of the slit (— 8°,
= 8:°), in the upper 9, half-plane, and let (. denote the rest of the upper @, half-plane,

The domain D, in the upper 6, half-plane set in correspondence by (16) corresponds
to the dornain B, of quasi~longitudinal wave field in the lower §, 1, half-plane, Shifts
of the quasi-longitudinal wave field in this domain are expressed by members of the
solution (1) for k¥ = 2 defined in the domain D, of the upper g, half-plane,

The domain C; of the upper 0, half-plane set in correspondence by the relationship
(2) for k=2 cormesponds to the domain of the quasi-transverse wave field in the lower
£, nyhalf-plane, Shifts in this domain are expressed by members of the solution (1) for
k =2 defined in the domain C; of the upper @, half-plane,

Pictured in Fig, 6 are grids on the upper b, half-planes corresponding to grids of polar
coordinates on the wave fields in the lower £, nyhalf-planes for magnesium sulfate
heptahydrate (the pictures are symmetrical relative to the imaginary or ordinate axes),

Cases when the values of &; and &, have opposite sign are the passage from the case
just considered to another not substantially different case, and can be analyzed easily,

It is assumed in [1] that the members with & = 1 in the solution (1) express quasi-
longitudinal disturbances, and with k = 2 quasi-transverse disturbances of SV type.
The investigations performed herein of the wave fields for media satisfying the condition
(7) show that the quasi-longitudinal disturbances cannot be expressed just by single mem-
bers of the solution (1) defined on the 6,-plane of the Riemann surface, In a certain
domain of the wave field the quasi-longitudinal disturbances are expressed by members
of the solution (1) defined on the 6,-plane, Results of investigations show that the wave

7
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picture in anisotropic media has negative singularities depending on the relations of the
other constants, If at least one of the values of (9) is less than zero, the inner wave front
has acute-angled edges, In these cases the quasi-transverse wave field is bounded by
sections of the inner front connecting the nodal points, The sections of the inner front
forming the acute-angled edges are inner fronts of quasi-longitudinal waves bounding
strips within this wave field in which there are no disturbances expressed by the solution

od - cv
L5 4 Py 3

Fig, 6

(1), The quasi-longitudinal disturbance field is a quintuply~connected domain for
Ny< 0 and N3 <0 or a wriply-connected domain upon compliance with one of the
conditions,
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